Activation Energy:
Technology Landscapes

and Forces of Adoption
Fall 2023

Introduction

* |'m an industrial programmer,
not researcher!

e Here by invitation, mainly to
tell undergrads strange history
stories in a different talk.

e This talk is more reflecting on
own experience, to provoke
conversation and speculate a
bit about the future.

The Author in 1984 learning how to get out of vi

Technology Adoption

* |'ve had good fortune to have
front-row seating during two
technology adoption events
In programming

e Distributed version control
e Memory-safe systems PLs

e | gather this is something
every researcher wants to
have happen to their work!

https://commons.wikimedia.org/wiki/File:A_laptop_and_a_typewriter.jpg CC-BY-SA 2.0

Conditions

e Each saw several attempts
"before conditions were right”

 This is a talk about conditions
being right, and not about
anything intrinsic in the tech

* Thesis: tech maturity only
one ingredient in uptake

e At the end, will talk about
application to .. databases?

Distributed Version Control

e For along time (15 years?)
everyone used CVS

* Flurry of activity in early 2000s

e SVN, DCVS, CVSNT,
OpenCM, BitKeeper, Arch,
Bazaar, CodeVille,
Monotone (mine), Hg, Git

e Git won, for several reasons

Memory-safe systems PLs

e For along time (25 years?)
everyone used C & C++; there
was a "VM language"” detour
(Java & C#) but didn't unseat

e Flurry of activity in late 2000s /
early 2010s

e Cyclone, Nim, ParaSail, Go,
Rust (mine), Swift, Clay, BitC

* |'m not going to declare any
"winner" here yet

Innovation alone didn't
drive either event

* |f you look into proclaimed
"technical innovations” in any
of these projects, you'll see
stuff lying around for decades

e Content addressing and
linked timestamps predated
Monotone by 10+ years

e Linear Lisp, Clean, Cyclone
predated Rust by 10+ years

e Just "slow tech transfer"?

https://commons.wikimedia.org/wiki/File:Clock,_Cremyll_Quay_Landing.jpg CC-BY-SA 4.0

Another model

e Chemistry analogy: activation energy

e Technology sits in stable state due
to barriers (people, processes)

e Conditions dictate change of state:

>
20
e
[T}
c
—
o
o
T
w
v
!
e
)

* Pressure to change raised

(II.I:()r(.)”,.]g II) Reactants
e Barriers to change lowered Products
(" enabl I ng ") Reaction Coordinate
Reaction: HO + CH;Br - [HO---CH5---Br]* - CH;OH + Br
° Many people Sense th IS happen I ng https://commons.wikimedia.org/wiki/File:Rxn_coordinate_diagram_5.PNG CC-BY-SA 3.0

and throw their hats in the ring!

* |nnovation happened before

Conseqguences of model

e Many factors force & enable

e Make a list of several things
wrong with current systems,
consider fixing many at once

e Don't neglect the enabling:
what's preventing change? did
any old barriers change?

e Grab bag of Other Stuff will
"come along for the ride"

e Some "technical upgrades”,
some "downgrades”

+

: B2
?A ™
N

=
A

https://commons.wikimedia.org/wiki/File:Shopping_list_20170612.jpg CC-BY-SA 4.0

e Just accept this will happen

Sometimes changes
bring technical "downgrades"

% Desktop

* Minicomputers to micros
. Word Mobile

* Desktop software to web "] Notes
' il W Pictures Videos
* Mice and keyboards to touch (5] Camera
l':-_') Windows Media
e Static to dynamic PL designs =
: Mmmmize
e Strong to eventual consistency 1 = Close
* These are not necessarily bad X
but they are "downgrades” in = Settings

the sense of removing existing @ Exit
tech because the new state
has different requirements

https://commons.wikimedia.org/wiki/File:Touchscreen.jpg CC-BY 2.5

Distributed Version
Control

DVC forcing conditions

e CVS was inadequate in many ways
e Non-atomic commits

e Synchronous online "updates”
that clobber workspace

e No offline actions at all
e Branching slow and fragile

e Didn't remember last merge

e No ability to fork, admin is
gatekeeper to project history

[RenameS, b|nary data, etC etC https://commons.wikimedia.org/wiki/File:

Diamond_road_sign_merge_to_single_lane.svg CC-BY

DVC enabling conditions

e Disks big enough and
networks fast enough to
replicate whole repo to clients

e Servers obtainable enough for
users to host their own repos

* Widespread cryptography to
play around with new models
of collaboration and trust
(SSH, PGP, SHA-1)

DVC technical upgrades
and downgrades

* Upgrades:
* Content addressing (venti)
* Linked timestamps
* Binary diffing (rsync, xdelta)
* Atomicity, renames, better merges
* Downgrades:
* Weakened confidentiality control
* Every replica gets everything!
* Weakened integrity control
* Every replica claims truth!
* Ul got extremely complex

* 3 possible meanings of any git ref?!

<refname>, e.qg. master, heads/master, r
A symbolic ref name. E.g. master t
object referenced by refs/heads/mas
both heads/master and tags/master,
heads/master to tell Git which one
a <refname> 1s disambiguated by tak
following rules:

1.

If $GIT DIR/<refname> exists, t
1s usually useful only for HEAD
MERGE_HEAD, REBASE_HEAD, REVERT
BISECT_HEAD and AUTO_MERGE);

. otherwise, refs/<refname> 1f 1it

. otherwise, refs/tags/<refname>

. otherwise, refs/heads/<refname>

. otherwise, refs/remotes/<refnam

Memory-Safe Systems
Programming Languages

Memory-Safe Systems PL

forcing conditions

C++ memory unsafety causing
constant security exploits

Much worse with threads, and
suddenly CPUs are multicore

Nightmare build systems,
using 3rd party packages hard

lllegible template errors

Younger devs avoiding entirely

“i)!l Nrer

https://commons.wikimedia.org/wiki/File:
Wallpapersden.com_anonymous-hacker-working_1280x720.jpg CC-BY 4.0

Memory-Safe Systems PL
enabling conditions

e LLVM, LLVM, LLVM

* Wealthy industrial benefactors
from dotcom & mobile booms

* Free academic publications:
Citeseer and ArXiv

e Accessible new books on type
systems and compilers
(Pierce, Appel)

Memory-Safe Systems PL
technical upgrades and downgrades

Compiling
Comp%l%ng :
e Upgrades: Compiiing o
Compiling
Compiling
. Compilin
e GC, RC, affine types or at least some zz:E::::E _
discipline for general memory safety Comiling !
Compiling
Compiling !

e Sometimes also data-race freedom el

Compiling stri
Comp%l%ng ‘,_
e FP-style tools for generic code Eiﬂﬁ;iini toki
. . Compiling futu:
(protocols, typeclasses, existentials) ggm‘im:i :
Comgiling
. . Comp?l%ng t
* Integrated build, test & packaging Compiting csopa
Compiling
Comp%l?ng f vi
e Downgrades: Compiling 1
Compiling !
Compiling .
. . . ompiling futul
» Often new fussy static rules (lifetimes?!) Eom&{;ni ‘
Comiting Foned
Compiling
Compiling serd
Compiling st:
Compiling hyper vo.l4.
Compiling &

e OO-style tools for generic code et f Lo

e Mostly single "reference implementations’

(overloading, specialization, inheritance) e
Compiling
B Building

Next-Generation
Databases!

(and maybe IFC)

Databases

* Thesis: pressure building for a
technology adoption event In
databases (or "data systems")

Rank

* Pure speculation on my part Nov Oct Noy DBMS

2023 2023 2022
1.

Oracle [z

MySQL

Microsoft SQL Server 3
PostgreSQL

MongoDB

Redis 2

Elasticsearch

IBM Db2

SQLite

Microsoft Access

* | argely same structure since
1970s, but now with WAN web
and mobile clients interacting
with DB via manual glue code

© V@ N OO LA WN
0 N O A WN -

2.
3.
4.
5.
6.
7.
8.
9.
0.

[y
-
o

[y
o
e y
O

e System full of annoyances!

* Biggest shift was "NoSQL",
which removed features!

Database
forcing conditions

Fragile replication and backup from sqlalchemy import *
from sqlalchemy.ext.declarative import declarative
from sqlalchemy.orm import relation, sessionmaker

e Bad versioning, incrementalism
Base = declarative_base()

Poor built-in query IanguageS class Movie(Base):

__tablename__ = "movies"

Impedance mismatches, low integration

id = Column(Integer, primary_key=True)
title = Column(String(255), nullable=False)

e Code/DB data model (ORMS) year = Column(Integer)
directed_by = Column(Integer, ForeignKey("direq
* WAN/DB (aUth’ CaChlng) director = relation("Director", backref="movies
e Repetitive manual Uls for CRUD def _{?ii__tiselfé,:{tle‘NO"ev year=None):
self.title = title
self.year = year
[

Schema migration & reflection
def __repr__(self):

o i i return "Movie(%r, %r, %r)" % (self.title, i

e Siloing, lack of federation, schema interop

class Director(Base):

e Increasing data regulations (residency, —tablename__ = "directors

retention, privacy, deletion) id = Column(Integer, primary_key=True)

Database
enabling conditions

Dramatic single-node perf improvement

e NVMe, io_uring, large memories, multicore, GPUs

e Vectorized interpreters (VectorWise)

Commodity columnar formats (Parquet, ORC, Arrow)

Commodity cloud object storage (S3)

Theory improvements
e Deterministic DB protocols (Calvin)
o Differential dataflow, IVM, "Datalog 2.0"
e Commodity machine learning
e Text, vector search, schema matching
e Stable set of "native Ul" targets

e Accessible new books on databases and distributed
systems (Petrov, Kleppmann)

e Possibly also Rust :)

(Plausible)
Database technical
upgrades and downgrades

e Upgrades:

* Provenance, data-policy compliance

Code in DB; typed, compositional PLs

Standard system-provided CRUD Uls

Federation, pub/sub, WAN clients

IVM and versioning

Online hot replicas & continuous backups

* Downgrades:

* |nteractive transactions, dependent queries

e Large menu of isolation levels, complex
concurrency control for peak performance

e ARIES, complex durability protocols

Surely we have enough
databases already?

* Many address some subset of issues!

e dbdb.io has 900+ DBs,

. Flat File Model | Hier
db-engines.com has 400 P g
Record 1 |-95 12 (= malon s
. . ecord 2 -495 5 Relational Mode Reconstruction Maintenance Rel abilitation
* Far fewer addressing structural issues e o ﬁ _ _

of the whole "data system"

* Most treat DB as "separate part”

* A few attempts that didn't stick: : l |
ai ro' ction - 3 = Preventive Maintenance
_ +:|:
o " d ISt rl b uted O bJ eCtS " S j z : Maintenance Ac Rigid PIImeent I:Iextl)lejjvement
| "_'(1 : // \\ // \

Vel

A
Spall Repair Joint Seal Crack Seal
7 7

e "semantic web" / "linked data"
https://commons.wikimedia.org/wiki/File:Database_models.jpg CC-BY-SA 3.0

. "web3"

Looking to The Past?

My view: we took a bit of a
wrong turn with the web?

J Microsoft Visual FoxPro M E
flo ERR View Foenx Toolt Progam Class Window Heb

o) &
* Or at least .. the web only —— —
does some things well , L [Propertior = mocloss vex fonotomans] T

" Order History B8 orvetomany

Customer Name; | ibiCustomerName

e 80s-90s 4GLs allowed simple
development of end-to-end apps

Del0ieLCD
Enabled

+ DB, PL, Ul (forms & tables) all | =

co-designed, tightly integrated e [
P] |7

* Doing today would embrace WAN Ot [WhasTidiond

e No-code / Low-code systems are
currently dabbling here

e Market: line-of-business and ERP apps

Information Flow Control
(IFC)

e |[FC hasn't really made it on its own
47 years since Denning!

e |t might come along for the ride,
if databases shift

e And/or be basis of modelling:
e Consistency, Availability,
Retention, Residency,

Provenance ... lots of stuff!

e Cornell projects & alumni already
explored several of these:

e Fabric, Qimp, MixT, ...

Operating R.S. Gaimn
slems Editoe

A Lattice Mode{ 0
Secure Information
Flow

Dorothy E. Denning
Purdue University

This paper investigutes mechanisms that guarantee
secure Information fow In 8 computer system, These
moechanisms are examined within o mathematical
framework suitable for formulating the requirements
of sccare Information fow among security classes,
The central compenent of the model is a lattice
structure derived from the security classes and justified
by the semantics of information Dow, The luttice
properties permit concise formulations of the security
requirements of different existing systems and facilitate
the construction of mechanisms that enforce security.
I'be model provides a umilying view of all systems
that restrict information flow, enables a classification
of them according to security objectives, and suggests
some new Approaches, It also leads to the construction
of awtomatic program certification mechanisms for
verilying the secure flow of information through a
program.,

Key Words and Phrases: protection, security,
information flow, security class, lattice, program
certification

CR Categories:

1ght & 1976,
ral permbsion 10 e
wierial is granted,
1 and that referenc
of i1ssue, and ©0 e fct tat repn
by permiion of the A

Science Foundat

IBM under a &

Sciences Deparument rdoe University, West Lalsyetie, IN
477,

236

T'he security mechanisms of most computer systems
make no a 1pl to guarantee secure informat
“Secure information flow," or s y 3
means | authorized flow of rmation is
possible. In the common example of ¢
military system, security requires that processes be
unable to transfer data m files of higher security

classifications to |f {or users) of lower ones: n t only

government or

must & user be p i from directly reading a file
wh security classification exceeds his own, but he
must be inhibited from indirectly accessing such in-
formation by collaborating in arbitrarily ingenious
ways with other users who have authorily to access the
information |[19].

Most access control mechanisms wre designed to
control immediate access to objects without 1aking
mto ac nt information ow paths implied b
given, outstanding collection of access rights. Con

npoTury access control mechanisms, such us

nd in Mulues |18, 20) or Hydra (24)

abilaties Lo enforee the isolat
of a multitask system, These

systems rely prim on assu 3 worthi

n secure
voperating

interest, Ha

that ' al it may b

ocess right to hject will

tem whose acesss control mechanism 5 modeled
by an access matrex [11, 15)

In our research into this em, we sought to find
suitable and viable res ing 10 which the
security of & system would not only be decidable, but
simply so. Our results show that suitable constraints do
indeed ex as thin the context of

richly structured model

2, The Model

2.1 Description

An
FM < (N
N a, b,
information receptacles, f N
segments, oF ¢ Prog '3 les, depending on the
level of sideration. Each user of the
system m also be regarded as an object, P
1Peg,...01 set of processes. Pros are the active
agents responsible foc all information flow
Commumicaticns 197

of
the ACM Number 3

Or ... maybe not?

| may be wrong about how tech
adoption works

| may be wrong about how ripe
databases are for an overhaul

This is just a hunch / talk idea

Maybe | just read some
database papers and books
and got too excited!

Please don't blame me for
sending you on wild research
goose-chase!

https://commons.wikimedia.org/wiki/File:Anser_anser_1_(Piotr_Kuczynski).jpg CC-BY-SA 3.0

NI

This talk is CC-BY-SA 4.0 because of the wide variety
of amusing images | used with CC-SA licenses

