

Technology from the past,
come to save the future

from itself.

Mozilla Annual Summit, July 2010
<graydon@mozilla.com>

Rust programming language
(a.k.a. “Project Servo”)

Oh no, not again

● Yes, I'm terribly sorry
● It's not for the web
● it's not for rapid prototyping
● it's not for casual programming
● It's not for lone genius hackers
● It's not for “managed runtimes”
● If you need these things, there are 9000 other

languages, pick one of them.

Ok then, for what?

It's for writing
large,

systems-level,
concurrent

programs that are
very safe,

predictable,
maintainable,

and
efficient.

Hyperbole

Many languages get written to show off
one new favored feature

or to explore a clever paradigm
and everything else
is an afterthought

a cobbled-together mess.

Bold claims

Rust does the opposite.

There is nothing new in Rust, at all.

Intent is to pick stuff widely known to be good,
and be thorough, not botch any one part so bad.

To have a language that doesn't make us cry.

Nothing new?

● Hardly anything. Maybe a keyword or two.
● Many older languages better than newer ones:

– eg. Mesa (1977), BETA (1975), CLU (1974) ...
● We keep forgetting already-learned lessons

● Rust picks from 80s / early 90s languages:
– Nil (1981), Hermes (1990)
– Erlang (1987)
– Sather (1990)
– Newsqueak (1988), Alef (1995), Limbo (1996)
– Napier (1985, 1988)

Details! (#1)

● Static safety:
– memory safety, no wild pointers
– typestate system, no null pointers
– mutability control, immutable by default
– side-effect control, pure by default

Details! (#2)

● Dynamic safety:
– Bounds-checked indexing, trapped signals, etc.
– Dynamic assertions drive typestates
– All errors cause failure, unwinding

● “Expected errors”? Use a disjoint union return
– Failure of a task is non-recoverable

● “Crash-only” tasks with isolation, trapping
● Pervasive logging, annotations for unwinding
● Supervision / restart task ownership tree

Details! (#3)

● Structural type bestiary:
– Records, tuples, vectors
– Tagged disjoint unions
– First class functions (with bindings)
– Structural objects

● Lightweight
● Immutable by default also
● No classes, no class hierarchy
● Just object types and objects that conform to them

Details! (#4)

● Actor language bestiary:
– Lightweight tasks (spawn 1 million tasks = ~1sec)
– Async, half-duplex channels (“buffered capabilities”)
– No shared mutable state
– Can only pass immutable messages
– Idempotent task failure, failure-signal linkage

Details! (#5)

● Systems language bestiary:
– Fast calling of C (~8 insns, switch stacks)
– Fast and safe stack-iterators (no cursor objects)
– No global GC to fight (only per-task, mutable bits)
– Real data structures (incl. nested structures)

● Stack allocation, destructors, RAII
– Multi-file compilation / optimization

● ELF/MachO/PE + DWARF
● works with GDB, valgrind, shark, etc.

Details! (#6)

● Other useful bits (trying to be thorough)
– Generics
– Bignums
– Nested modules with import/export control
– UTF8 strings (not UCS2)
– Marked syntax-extension system
– Reflection, dynamic type, type-switch

● None of this stuff is surprising or unique!

Implementation status

● Young, immature, hobby project until lately
– Mostly-done design by now, heads down
– ~80% language features working
– ~70% runtime working

● 35kloc bootstrap compiler (ocaml)
– Built-in x86 backend for linux, win32, OSX
– LLVM backend in progress

● Minimal standard library
– Hello there, interns!

Mozilla Involvement

● Until last summer, I worked on this alone.
● Mozilla has strategic interest safer languages

for the future. Memory / concurrency bug
whack-a-mole gets stale. Investing in Rust.

● No concrete plans regarding specific use.
Investing in project to see what develops.

● Small team presently working within labs.
● Volunteers (and non-mozillans) welcome.

Huh? No code samples?

● Not in this talk, it'd be a distraction
– It reads really predictably, C-family-ish
– Syntax is very secondary to semantics
– Also easy(-ish) to tweak as we go along
– Had to leave you curious after the talk :)

● Besides, do you really want to spend your hours
on planet earth arguing over syntax?
– Please keep this thought in mind when posting to

the mailing list

Inevitable question: is this like “Go”?

● No
– I've been working on Rust for years. There are

dozens of actor languages in the pipeline. Go to a
PL conference and ask around.

● Go seems to be barking up a different tree?
– Has coroutines, but kept shared mutable state
– Has memory safety, but kept null pointers
– Has unwinding, but no destructors or RAII
– Has message passing, but no immutability
– Has some built-in generics, but not in user code

Immediate plans

● Keep hacking on compiler and runtime
– Eventually transition to self-hosted frontend, LLVM

backend
● Build out libraries and bindings
● Need help: experienced language implementors

best, plus an army of worker-drones
– Please: no research or novelty! There's plenty of

known-good technology in the literature.

Fini

Q and A time!

